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The notion of the eigenfrequency of a convective cell has been introduced and three methods for determina-
tion of this parameter in numerical experiments have been proposed. The effect of resonance of the stream
function in the field of a rotating gravity vector (this effect has been found earlier) is used for thermal gravi-
tational convection in a square cavity. Thermocapillary convection is investigated in a rectangular cavity and
in a cylinder. In these cases use is made of the resonance effect and the variation of the parameters with
eigenfrequency under the action of a heat flux harmonically oscillating and acting on the free surface of the
liquid. The correspondence between the obtained eigenfrequencies of the convective cell and the frequencies of
oscillatory convection, obtained in numerical calculations and experiment, has been established.

Introduction. The problem of turbulent convection regimes has long been the focus of attention of theoretical
hydromechanics but, despite this fact, it remains to be finally solved. A specific case of turbulent flows is the oscilla-
tory regime of convection in closed liquid volumes. Unlike the classical turbulence in the case of external flow past
solid surfaces, such convection regimes are characterized by the ordered variations of the parameters of a liquid whose
spectrum contains a finite number of frequencies. The oscillatory convection regime has generated great interest in re-
cent times in connection with important technical applications, primarily with the processes of growth of bulk single
crystals. Determination of the frequency spectrum in the oscillatory convection regime and their relations to the geo-
metric characteristics of liquid volumes, the dynamic parameters of flow, and the boundary conditions is an important
problem for construction of the theory of stability of convection in closed volumes.

The relation of temperature variations in a melt to the microsegregation of active impurities in the grown
crystals with the so-called impurity striation of crystals has been established in [1, 2]. Impurity striation is a very sig-
nificant defect of a crystal which is expected to be used in microelectronics, for example, as a substrate in creation of
large-scale integrated circuits. Therefore, we have seen many publications appearing on the oscillatory regime of ther-
mal gravitational convection and on the methods of suppression of temperature oscillations in a melt. Works on oscil-
lating thermal gravitational convection have been reviewed in [3].

It has been found in experiments on crystal growth aboard spacecraft that for the case where we have a free
nonisothermal melt surface (constantly existing or periodically formed), of importance is thermocapillary convection
that finds itself in the region of oscillatory regime in crystal growth by the floating-zone method (liquid column with
a free cylindrical surface) under microgravity conditions. The number of experimental works on investigation of oscil-
lating thermocapillary convection is small. The experiments under microgravity conditions were carried out only for
liquids with large Prandtl numbers (Pr > 1), whereas data for liquids with Pr < 1 (melts of semiconductor materials) are
critically required. In the analysis of the experimental results, the action of vibration was disregarded, although this ac-
tion is significant for free liquids, as our investigations [4, 5] have shown. Works on oscillating thermocapillary con-
vection have been reviewed in [6]. It is noted that even a low azimuthal velocity in a cylindrical volume of a liquid
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(three-dimensional flow) causes the oscillations to appear much earlier than in the case of the axial symmetry of flow
(two-dimensional approximation).

Different modes of temperature variations (oscillations) — harmonic oscillations [1] and nonharmonic ones [2]
— were obtained as early as in the pioneering works on oscillating thermal gravitational convection. The reason for
such a difference was not quite clear until very recent times, since the mechanism of occurrence of the oscillations
was not clear.

1. Formulation of the Problem and Procedure of Solution. Numerical calculations of oscillating convection
in a two-dimensional formulation [4] clearly show that the oscillations are related to the periodic change in the shape
and location of convective cells in a liquid. This has allowed the conclusion [8] that the spectra of oscillatory regimes
are the reflection of ordered space-time vortex structures in the liquid. In this work, the notion of the eigenfrequency
of a convective cell was used as one characteristic of these structures. Thereafter it was assumed that the frequency of
oscillations of the parameters in the liquid is identical to the eigenfrequency of the convective cell. Let us consider the
formulation of the problem on determination of the eigenfrequencies of convective cells and procedures of its solution
separately for both types of convection in two-dimensional flows.

Thermal Gravitational Convection. The driving force for thermal gravitational convection is the buoyancy
force which contains free fall acceleration as one parameter in the expression for this force. Therefore, in this case it
seems natural to apply one type of harmonic oscillations of free fall acceleration or another to the determination of the
eigenfrequencies of convective cells. Measurements of microaccelerations aboard the Salyut orbital station gave impetus
to the beginning of investigations in the field of space-time evolutions of the gravity vector [9]. In the analysis of the
measurements, it was established that the vector of vibrational microaccelerations rotates in a plane. For thermal gravi-
tational convection we found the resonance effect where the frequency of the indicated evolutions of the acceleration
vector attains a certain value (Fres) [10, 11]. The resonance effect is attained not only in rotation of the acceleration
vector in a plane but also in its harmonic linear oscillation with the same frequency perpendicularly to the prescribed
temperature gradient. We obtained resonant frequencies for a liquid with Prandtl number Pr = 1 in [10, 11] and for Pr
= 0.018 in [8]. It should be noted that the vibrational frequencies aboard the spacecraft lie in the region of much
higher frequencies than the eigenfrequencies for convective cells. Furthermore, the value of vibrational accelerations
aboard is too low for us to observe the effect directly aboard the spacecraft. Therefore, a special experiment on check-
ing it aboard the Mir orbital space station was proposed ten years ago. It was assumed to simulate the the rotation of
the vector of gravitational acceleration in zero gravity using centrifugal acceleration in the rotation of a square cavity
with frequency Fres and synchronous rotation of the cavity with a liquid about its center. The condition implying that
the radius of rotation of the cavity is much larger than half the side of the square enables us to disregard the accel-
eration produced by the rotation of the cavity. The phenomenon of resonance found in the numerical calculations is an
example of virtual numerical experiments that can be used as an efficient means for studying fundamental phenomena
in fluid mechanics, when a physical experiment is in principle impossible or difficult to realize.

Thermal gravitational convection is investigated for a square region. One boundary is heat-insulated. A linear
temperature distribution between the values T0 and Tmax is prescribed on the opposite side. The temperatures T0 and
Tmax on the other two sides are held constant. The vector of free fall acceleration is arranged on the plane in various
manners depending on the problem solved. In the calculations of the oscillating convection regime, the acceleration is
constant in value, acts in parallel to the boundaries with prescribed values of the temperature, and is directed toward
the heat-insulated boundary. If we solve the problem of finding the resonance, the acceleration vector rotates in the
plane in question about its center with a prescribed angular frequency ω = 2πf. All the boundaries of the region rep-
resent solid walls on which the adhesion condition is set. The liquid (fluid) is viscous and incompressible.

The dimensionless equations that control the transfer of momentum and heat in the liquid are written in vector
form

 div v = 0 , (1)

∂v ⁄ ∂τ + (v∆) v = − ∇ p + ∇ 2
v + θeg , (2)

∂θ ⁄ ∂τ + (v∆) θ = Pr
−1

 ∇ 2θ , (3)
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where eg(−GrT,x; 0) is used for calculations of oscillating convection and eg(GrT,x sin (Ω, π) + GrT,y(Ω, τ)) is used for
investigation of the phenomenon of resonance.

Thermocapillary Convection. Thermocapillary convection occurs in the presence of the pressure gradient on
the free surface of a liquid and is determined by the value of this gradient and by the temperature dependence of the
surface tension. This phenomenon is of importance in a number of technological processes but is particularly pro-
nounced under microgravity conditions. The floating-zone method is the most promising for microgravity conditions;
therefore, we modeled thermal conditions precisely for this method of growing crystals. In this method, a distributed
heat flux with a maximum at the center of the length of a liquid zone acts on its free surface. To determine the eigen-
frequency of a convective cell under the thermocapillary effect it was logical to use the harmonic action on the tem-
perature field on the free liquid surface. We used two methods of such an action. The first method uses a
comparatively small harmonically oscillating heat flux; this flux is superimposed on a constant heat flux arriving at the
free surface of the liquid. It is assumed that when the oscillation frequency of the variable heat flux coincides with the
eigenfrequency of the convection cell, we must have a resonance and the stream function will attain its maximum
value. The second method differs from the first one in that the additional heat flux is fairly large but short-acting, i.e.,
a shock thermal action occurs. In this case one might expect that after the transient period, damped oscillations of the
parameters will be executed at the eigenfrequencies of the convective cells.

Thermocapillary convection is considered for rectangular or cylindrical regions with elongation L/d or L/R re-
spectively. One long side of the rectangle or the lateral cylindrical surface represents the free liquid surface on which
the external heat flux is prescribed in the form of the exponent

(∂θ ⁄ ∂r; x) r,x=1 = A exp [− B (z; y − L ⁄ 2)2
] . (4)

Such a time-constant heat flux acts when the oscillating regime of convection is studied. If the eigenfrequency of a
convective cell is determined, the total heat flux takes the following form:

(∂θ ⁄ ∂r; x) r,x=1 = A exp [− B (z; y − L ⁄ 2)2
] + A1 exp [− B (z; y − L ⁄ 2)2] sin (Ωτ) . (5)

The opposite side represents the axis of symmetry for the cylinder or the heat-insulated solid wall for the rec-
tangle. A constant initial temperature T0 is prescribed on the other two sides. Equations describing flow and heat trans-
fer in the case of action of thermocapillary convection are generally the same as those in studying gravitational
convection. The difference is that we consider the condition of total zero gravity (GrT = 0) and, instead of the adhe-
sion condition at all the boundaries, we use in this case the kinematic condition for the tangential velocity component
on the free liquid surface (r, x = 1), which describes the thermocapillary effect:

∂v ⁄ ∂τ = − Ma Pr
−1

 ∂θ ⁄ ∂z (y) . (6)

In obtaining the dimensionless equations (1)–(6) and the dimensionless parameters, we used the following
scales: R or d for the linear dimension, νR−1 (or νd−1) for the velocity, R2ν−1 (or d2ν−1) for the time, R−2ν (or d−2ν)
for the frequency, and ρν2R−2 (or ρν2d−2) for the pressure. The temperature difference is prescribed in the problem on
thermal gravitational convection and is not prescribed for thermocapillary convection, since, according to the condition
of the problem, the heat flux at the free boundary acts. However, the Marangoni number was corrected by multiplica-
tion by the maximum temperature (θmax) actually obtained in the system.

Difference Scheme. Since calculations were assumed to be carried out in the region of fairly high velocities of
flow of the viscous liquid, the requirements imposed on the difference scheme must be high. To solve the problem
formulated we used a finite-difference scheme of the third order of accuracy in spatial coordinates with clustering of
the grid nodes toward the boundaries of the computational domain, where we have high velocities or large gradients
of velocity of liquid flow. The scheme is implicit and conservative and possesses the property of conditionally mono-
tone approximation of the convective term in the equation of motion (2). The efficient computational algorithm devel-
oped on the basis of the implicit conjugate-gradient method possesses rapid convergence. In calculating pressure, we
determined the increment of pressure. The finite-difference scheme is checked in the well-known test on liquid flow in
a three-dimensional cavern with a moving cover. A comparison of the calculations according to this procedure with the
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results of the existing solutions of the test problem and with the data of the corresponding experiment has shown high
accuracy and efficiency of the computer program. The scheme was used earlier for solution of different convection
problems [5, 8]. In these publications, it was shown that one can obtain solutions for velocities corresponding to
Reynolds numbers of D30,000 on fairly coarse grids and with large time steps. Further improvement of the computa-
tional scheme for solution of the problem formulated involved changing the boundary conditions in accordance with
the description presented above. To determine the oscillation spectra of the parameters in the liquid we used the Han-
ning algorithm of Fourier analysis.

2. Calculation Results. Thermal Gravitational Convection. Thermal gravitational convection was studied for a
square cavity and liquids with Prandtl numbers equal to 1 and 0.018. The structure of flow in a rotating field of free
fall acceleration depends on the value and rotational frequency of the vector g. At high (but lower than the "acoustic"
frequency f∗  = v∗ L−1) rotational frequencies of the vector of free fall acceleration, the particles of the liquid vibrate
with a frequency, executing a drift with a low velocity corresponding to the intensity of the average vibrational con-
vection. At low frequencies, flow is disordered and consists of elements inherent in steady-state flow for certain static
positions of the acceleration vector. The regime of resonant flow is between these limits. The flow structure and the
temperature field for this regime are shown in Fig. 1. The central part of the liquid is isothermal, in practice, and ro-
tates as a solid body. All the parameters in the liquid oscillate in this regime with a resonant frequency, which is seen
in Fig. 2. The instant at which the resonant regime of flow begins, when the rotational frequency of the vector coin-
cides with the eigenfrequency of the convective cell, can accurately be determined from the maximum of a plot show-
ing the time-average value of the maximum of the stream function against the rotational frequency of the vector of
gravitational acceleration g. Such dependences for three values of the Rayleigh number are presented in Fig. 3. Time
averaging has been performed, since this parameter also oscillates with a small amplitude. It is clear from the figure
that the value of the resonance effect under study decreases with acceleration amplitude. That is the reason why it is
very small under vibration aboard the spacecraft and cannot be measured.

Figure 4 shows the resonant rotational frequencies of the acceleration vector g as functions of the Rayleigh
number for liquids with Prandtl numbers equal to 1 ad 0.018.

Direct numerical calculations of oscillating thermal gravitational convection in the square cavity were carried
out with the same boundary conditions as those used in obtaining generalization for the eigenfrequencies of the con-
vective cell. For Pr = 0.018 and GrT = 2.2⋅107 and 4.4⋅107 the oscillation frequencies of the parameters in the liquid
turned out to be equal to 1100 and 1700 respectively. Temperature variations at a point with the coordinates x = 0.27,
y = 0.72 are shown as an example in Fig. 5 for GrT = 2.2⋅107. The generalized dependence (Fig. 4) gives eigenfre-

Fig. 1. Stream-function (a) and temperature (b) fields in rotation of the vector
of free fall acceleration with a resonant frequency. GrT = 1.1⋅108, Pr = 0.018,
and Frot = 2500.
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quencies of the convective cell of 1090 and 1650 for these Grashof numbers. Thus, the assumption on the identity of
the resonant frequencies for convective cells and the frequencies of oscillatory convection was confirmed.

We also compared the resonant frequency and the temperature-oscillation frequency obtained in the experiment
of Boyarevich and Gorbunov [12]. In this experiment an In-Ga-Sn melt (Pr = 0.018) was placed in a cell in the shape
of a short parallelepiped with a square cross section. Thermal boundary conditions were the same as those used in our
calculations. The temperature at a point with the coordinates x = 0.27, y = 0.82 in the square cross section drawn
through the center of the short sides of the parallelepiped oscillated at a dominant dimensionless frequency of D1200
for GrT = 2.2⋅107, when there was no magnetic field in the experiment. Thus, the difference of the experimental fre-
quency from the calculated values (1100 and 1200) does not exceed 10%.

The dependence of the eigenfrequency (oscillation frequency) on the Rayleigh number in the Ra range be-
tween 1⋅104 and 106 for a Prandtl number equal to 0.018 can be expressed in the form Fres = 0.67 Ra0.574 in accord-
ance with the generalization presented in Fig. 4. The exponent in this relation very closely corresponds to the exponent
for the similar relation (0.662) that has been obtained from the data presented in Mu

..
ller’s monograph [3]. The differ-

ence in the preexponential factors (0.67 from our data and 0.2 from the data of [3, p. 104]) is attributable to another
geometry (cylinder) and somewhat different thermal boundary conditions. In what follows we will consider the depend-
ence of the preexponential factor on the geometry of a liquid volume in greater detail.

Fig. 2. Variation in the temperature at the selected point x = 0.27, y = 0.72 (a)
and in the maximum value of the stream function (b) at the instant of reso-
nance. GrT = 2.2⋅107, Pr = 0.018, and Frot = 1100.

Fig. 3. Time-average maximum of the stream function vs. rotational frequency
of the free-fall-acceleration vector for three values of the Rayleigh number: 1)
Ra = 1.7⋅106, 2) 7⋅105, and 3) 1.7⋅105. Pr = 1.

Fig. 4. Generalized dependence of the resonant rotational frequency of the vec-
tor of free fall acceleration on the Rayleigh number for thermal gravitational
convection in a square cavity: 1) Pr = 0.018 and 2) 1.0.
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Thermocapillary Convection. The eigenfrequencies of convective cells for liquid flows under the action of the
thermocapillary effect were determined for rectangular and cylindrical regions with different degrees of elongation: L/d
and L/R respectively. Furthermore, we considered two forms of distribution of the heat flux on the free surface of the
liquid for L/d = 2, which differed in the values of the numerical parameters A and B. In the calculations, the Prandtl
number was equal to 0.018.

The process of determination of the resonant frequency under the action of the time-variable heat flux on the
free surface is very close to that considered above for thermal gravitational convection. In this case, too, a small vari-
able heat flux is added to a constant heat flux creating thermocapillary flow. We see the oscillation frequency at which
there is a maximum in the dependence ψ

__
max (f). It is precisely this frequency that is the resonant frequency (or eigen-

frequency) of the convective cell, which is clearly shown by Fig. 6.
Also, we used the procedure of shock action of the heat flux in accordance with relation (5). Figure 7 shows

the reaction of the liquid to the action of such a thermal load. After random oscillations (most of this stage is not pre-
sented in this figure), the damped oscillations of the parameters in the liquid are executed at eigenfrequencies for con-
vective cells. We note that when both procedures are used, the oscillation spectrum of the parameters in the liquid
contains the frequency of action applied which is excluded in spectral analysis.

Fig. 5. Results of calculation of oscillating thermal gravitational convection in
a square cavity: a) temperature oscillations at the point x = 0.27, y = 0.72; b)
spectrum of these oscillations. GrT = 2.2⋅107, Pr = 0.018.

Fig. 6. Time-average maximum of the stream function vs. oscillation frequency
of the heat flux at the free boundary of the liquid in a rectangle. Ma =
4.4⋅102, L/d = 2, A = 0.8, B = 0.3, and A1 = 0.6.

Fig. 7. Damped oscillations of temperature at a point on the free surface of a
liquid column after the action of a shock heat flux at this boundary at the
point x = 1.0, y = 0.5. Ma = 9⋅103, A = 0.8, B = 0.3, and Ωimp = 1.5⋅104.
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Figure 8 gives the dependences of the resonant frequency (eigenfrequency of the convective cell) on the com-
plex parameter Ma/Pr frequently used to characterize the intensity of thermocapillary convection. We note that in the
region of low flow velocities, when Ma/Pr < 2⋅105, and for a ratio of the sides lower than 3 the slope of the curves
is the same for the rectangular and cylindrical geometries of the liquid, although the absolute values for the same elon-
gations differ for the rectangle and the cylinder. This fact can serve as an indirect explanation for the result of the
comparison of the data obtained in the present investigation and those given in [3].

We carried out direct calculations of oscillating thermocapillary convection and compared the results to the
generalizations obtained for the eigenfrequencies of the convective cell. Figure 9 shows the spectrum of velocity oscil-
lations at a point on the free cylindrical surface of the liquid column of elongation L/R = 3 and for heat-flux distri-
bution containing constants A and B of 0.8 and 0.3 respectively at this boundary. In this case the Marangoni and
Prandtl numbers were 4⋅103 and 0.018 respectively. The spectrum contains a frequency of 322, whereas the generaliz-
ing curve shown in Fig. 8b gives a value of the resonant frequency Fres of 310.

No comparison to experimental data was carried out, since they are incomplete. First of all, we failed to
measure the heat flux on the free surface in the experiments or at least the temperature distributions at this boundary,
which would allow approximate judgment of this boundary condition. Furthermore, the experiments, as has been indi-
cated in the Introduction, were carried out for liquids having Prandtl number Pr >> 1 and without measuring the vibra-
tional situation near the experimental setup, which could distort the frequency characteristics of parametric oscillations
in the liquid quite significantly.

CONCLUSIONS

The investigation carried out has shown that the introduced notion "eigenfrequency of a convective cell" can
be applied to determination of the oscillation frequencies of thermal gravitational and thermocapillary convection.
Knowing the oscillation spectrum of convective cells, in the analysis of experiments in which the oscillations of the

Fig. 8. Generalized dependence of the resonant frequency on the complex pa-
rameter for thermocapillary convection in a rectangular cavity (a) (1) L/d = 2,
A = 0.8, and B = 0.3; 2) 3, 0.8, and 0.3; 3) 2, 2.7, and 8) and in a liquid cyl-
inder with three values of the elongation (b) (1) L/R = 2, 2) 2.5, and 3) 3 (A
= 0.8 and B = 0.3).

Fig. 9. Oscillation spectrum of the dimensionless velocity at the point r = 1, z
= 1.2 on the free surface of a liquid column. Ma = 4⋅103, Pr = 0.018, L/R =
3, A = 0.8, and B = 0.3.
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parameters in the liquid are observed, we can single out the oscillations that are not related to the hydrodynamic in-
stability of flow and thus are only the reaction of the medium to the external action and not the characteristics proper
of oscillating (turbulent) convection. The above reason is particularly significant for conditions under which the experi-
ments aboard spacecraft were carried out. We should take into account the phenomenon found in [4, 5] where the os-
cillation of the free surface in the presence of deformation is executed with a frequency lower than the vibration
frequency, and the oscillation spectra of the parameters in the liquid contain additional frequencies that are due to the
nonlinearity of the medium and different characteristic velocities for the transfer of heat and mass, when the Prandtl
and Schmidt numbers are different from unity.

In this investigation, we have presented results of determination of the eigenfrequencies for convective struc-
tures consisting of one cell or for symmetric structures consisting of two identical cells (in the case of thermocapillary
convection with a symmetric distribution of the heat flux on the free surface). For more complex structures, several
eigenfrequencies and combined frequencies must be present in the spectrum under study. Investigation of these more
complex cases can be carried out with the use of the procedures proposed.

The use of the eigenfrequency of a convective cell provides an explanation for the change in the oscillation
frequencies of convection upon the application of a magnetic field, since it clearly demonstrates the manner in which
this effect is related to the change in the flow structure and in the velocities of flow of the liquid in the magnetic
field. The quantitative value of the eigenfrequency of the convective cell reveals a clear boundary dividing the regimes
of vibrational convection (hydrodynamically high frequencies) and of irregular convection (low frequencies) in the field
of time-variable accelerations of body forces, for example, gravity.

This work was carried out with support from INTAS, project No. INTAS 00-0617.

NOTATION

a, thermal diffusivity of the liquid, m2⋅sec−1; A, B, and A1, B1, constants in expressions (4) and (5); d, width
of the rectangular liquid region, m; e, dimensionless vector with the coordinates of the buoyancy force in (2); f, fre-
quency, sec−1; F = fR2ν−1 (or fd2ν−1), dimensionless frequency; g, free fall acceleration, m⋅sec−2; GrT = gβT∆Td3ν−2,
Grashof number for thermal convection; L, length of the liquid region, m; L/R (or L/d), elongation of the liquid re-
gion per unit length; Ma = −(∂σ ⁄ ∂T)R(or d)∆T(ρνa)−1, Marangoni number; Pr = νa−1, Prandtl number; p, pressure,
Pa; r, z, cylindrical coordinates, m; R, radius of the cylindrical liquid region, m; Ra = GrTPr, Rayleigh number; T,
temperature, K; t, time, sec; v, velocity vector, m⋅sec−1; x, y, rectangular coordinates, m; βT, coefficient of thermal
expansion of the liquid, K−1; ∆T = Tmax − T0, temperature difference, K; θ = (T − T0)/∆T, dimensionless temperature;
ν, kinematic viscosity, m2⋅sec; ρ, density of the liquid, kg⋅m−3; σ, coefficient of surface tension of the liquid, N⋅m−1;
τ = tR2(or d2)ν, dimensionless time; ψ, dimensionless stream function; ω = 2πf, circular frequency, sec−1; Ω =
ωR2(or d2)ν−1, dimensionless circular frequency. Subscripts: 0, initial temperature in the system; g points to the gravi-
tation effect; imp, impulse; max, maximum value of the parameter; res, parameter referring to resonance; rot, rota-
tional; x, y, and r, projections of the parameter onto the coordinate axes; ∗ , quantities referring to the acoustic region
of the liquid flow; bar, averaging of the parameter over the frequency of action applied.
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